Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 12(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137298

RESUMO

Apple producers are looking for new markets to dispose of their harvest surpluses. One of the solutions may be the production of apple spirits by small distilleries. This study aimed to evaluate the influence of apple cultivars and technological treatments, i.e., pasteurization, depectinization, and deacidification, on the fermentation efficiency and quality of the distillates. Samples for fermentation were prepared from Polish apple cultivars (Antonówka, Delikates, Kosztela, Kronselska). The control samples were raw pulp-based samples. After fermentation, the samples were analyzed for ethanol, residual sugars, and by-product content by the HPLC technique. The distillates were tested for volatile compounds by the GC-MS method and their sensory evaluation was performed. Raw pulp-based samples, independent of the apple cultivar, showed fermentation efficiencies between (75.77 ± 4.69)% and (81.36 ± 4.69)% of the theoretical yield. Depectinization of apple pulp prior to fermentation resulted in the highest ethanol concentration and yield up to approximately 89%. All tested apple distillates were rich in volatile aroma compounds and met the requirements of the EU regulation for hydrogen cyanide content. The obtained results indicate that the tested apple cultivars can be used for the efficient production of apple spirits, providing producers with an opportunity for brand development.

2.
Biomolecules ; 12(8)2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-36008979

RESUMO

High concentrations of aldehydes may result in poor-quality agricultural distillate. We investigate the influence of the method of mash preparation, the initial pH of the mashes, and different yeast strains on the fermentation efficiency and concentration of aldehydes from C2 (acetaldehyde) to C7 (enanthaldehyde) in rye mashes. The tested factors were revealed to have a differentiated influence on both the process efficiency and the concentrations of aldehydes, especially in the case of the dominant acetaldehyde. Mashes obtained from steamed rye grain showed significantly higher fermentation efficiencies than those prepared by the pressureless method. Increasing the pH of the sweet mashes from 4.5 to 6.0 resulted in significantly higher concentrations of acetaldehyde, especially in the case of steamed rye grain. Moreover, an increase in the concentrations of other aldehydes, i.e., from C3 (propionaldehyde) to C5 (valer- and isovaleraldehyde) was observed. A high fermentation efficiency and the lowest acetaldehyde concentrations were obtained from steamed rye mashes with an initial pH of 4.5, fermented using the yeast strains DistilaMax GW and DistilaMax HT. DistilaMax HT yeast also provided a relatively low concentration of acetaldehyde in mashes with an initial pH in the range of 4.5-5.5 prepared by the energy-saving pressureless method.


Assuntos
Saccharomyces cerevisiae , Secale , Acetaldeído , Aldeídos , Fermentação
3.
Molecules ; 25(5)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182852

RESUMO

Volatile sulfur compounds (VSCs) play an important role in the aroma profile of fermented beverages. However, because of their low concentration in samples, their analysis is difficult. The headspace solid-phase microextraction (HS-SPME) technique coupled with gas chromatography and mass spectrometry (GC-MS) is one of the methods successfully used to identify VSCs in wine and beer samples. However, this method encounters more obstacles when spirit beverages are analyzed, as the ethanol content of the matrix decreases the method sensitivity. In this work, different conditions applied during HS-SPME/GC-MS analysis, namely: ethanol concentration, salt addition, time and temperature of extraction, as well as fiber coating, were evaluated in regard to 19 sulfur compounds. The best results were obtained when 50/30 µm Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) was used to preconcentrate the analytes from the sample at 35 °C for 30 min. The dilution of samples to 2.5% v/v ethanol and the addition of 20% w/v NaCl along with 1% EDTA significantly improves the sensitivity of extraction. The optimized method was applied to three fruit brandy samples (plum, pear, and apple) and quantification of VSCs was performed. A total of 10 compounds were identified in brandy samples and their concentration varied greatly depending on the raw material used from production. The highest concentration of identified VSCs was found in apple brandy (82 µg/L).


Assuntos
Alimentos Fermentados/análise , Odorantes/análise , Compostos de Enxofre/isolamento & purificação , Enxofre/química , Cromatografia Gasosa , Dimetilpolisiloxanos/química , Frutas/química , Espectrometria de Massas , Microextração em Fase Sólida , Compostos de Enxofre/química , Compostos de Vinila/química
4.
Molecules ; 25(4)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102411

RESUMO

The study describes sulfuric acid pretreatment of straw from Secale cereale L. (rye straw) to evaluate the effect of acid concentration and treatment time on the efficiency of biofuel production. The highest ethanol yield occurred after the enzyme treatment at a dose of 15 filter paper unit (FPU) per gram of rye straw (subjected to chemical hydrolysis with 2% sulfuric acid (SA) at 121 °C for 1 h) during 120 h. Anaerobic digestion of rye straw treated with 10% SA at 121 °C during 1 h allowed to obtain 347.42 L methane/kg volatile solids (VS). Most hydrogen was released during dark fermentation of rye straw after pretreatment of 2% SA, 121 °C, 1 h and 1% SA, 121 °C, 2 h-131.99 and 134.71 L hydrogen/kg VS, respectively. If the rye straw produced in the European Union were processed into methane, hydrogen, ethanol, the annual electricity production in 2018 could reach 9.87 TWh (terawatt-hours), 1.16 TWh, and 0.60 TWh, respectively.


Assuntos
Etanol/metabolismo , Hidrogênio/metabolismo , Metano/biossíntese , Secale/química , Ácidos Sulfúricos/química , Bactérias/metabolismo , Biocombustíveis/provisão & distribuição , Fermentação , Temperatura Alta , Humanos , Hidrólise , Caules de Planta/química , Energia Renovável
5.
J Food Sci Technol ; 56(4): 2049-2062, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30996439

RESUMO

The purpose of this study was to investigate the effect of alcoholic strength by volume (ASV) and storage conditions on turbidity in plum brandies. Different types of filter sheet were also tested for their effects on turbidity, as well as on the chemical composition and organoleptic characteristics of the distillates. The raw materials used were two plum distillates with initial ASVs of 76.77% v/v and 81.92% v/v. The distillates were diluted to alcohol contents of 37.5%, 40% and 50% v/v and stored under various conditions for 64 days. Filtration was performed using two depth filter sheets, with nominal retention rates of 0.40-0.48 µm and 0.80 µm, or with an activated carbon-based filter sheet. The lowest turbidity was observed in samples stored at ambient temperature with an ASV of 50% v/v. Reducing the alcohol content and storage temperature caused turbidity to increase. Samples prepared from distillate with an initial alcohol content of 76.77% v/v were characterized by significantly higher turbidity than those produced from spirit with an initial ASV of 81.92% v/v. Lowering the storage temperature resulted in a larger decrease in the concentration of volatile compounds after filtration. Use of an activated carbon filter sheet caused the greatest decrease in the majority of volatiles. Use of a filter sheet with a nominal retention rate of 0.80 µm led to the greatest improvement in the organoleptics of the tested plum distillates.

6.
Int J Mol Sci ; 20(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987119

RESUMO

The qualitative and quantitative composition of volatile compounds in fermented distillery mash determines the quality of the obtained distillate of agricultural origin (i.e., raw spirit) and the effectiveness of further purification steps. Propan-2-ol (syn. isopropyl alcohol), due to its low boiling point, is difficult to remove by rectification. Therefore, its synthesis needs to be limited during fermentation by Saccharomyces cerevisiae yeast, while at the same time controlling the levels of acetaldehyde and acetic acid, which are likewise known to determine the quality of raw spirit. Lactic acid bacteria (LAB) are a common but undesirable contaminant in distillery mashes. They are responsible for the production of undesirable compounds, which can affect synthesis of propan-2-ol. Some bacteria strains are able to synthesize isopropyl alcohol. This study therefore set out to investigate whether LAB with S. cerevisiae yeast are responsible for conversion of acetone to propan-2-ol, as well as the effects of the amount of LAB inoculum and fermentation parameters (pH and temperature) on the content of isopropyl alcohol, acetaldehyde, lactic acid and acetic acid in fermented mashes. The results of NMR and comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (GC × GC-TOF MS) analysis confirmed the ability of the yeast and LAB strains to metabolize acetone via its reduction to isopropyl alcohol. Efficient fermentation of distillery mashes was observed in all tested mashes with an initial LAB count of 3.34-6.34 log cfu/mL, which had no significant effect on the ethanol content. However, changes were observed in the contents of by-products. Lowering the initial pH of the mashes to 4.5, without and with LAB (3.34-4.34 log cfu/mL), resulted in a decrease in propan-2-ol and a concomitant increase in acetaldehyde content, while a higher pH (5.0 and 5.5) increased the content of propan-2-ol and decreased acetaldehyde content. Higher temperature (35 °C) promoted propan-2-ol synthesis and also resulted in increased acetic acid content in the fermented mashes compared to the controls. Moreover, the acetic acid content rose with increases in the initial pH and the initial LAB count.


Assuntos
2-Propanol/metabolismo , Acetaldeído/metabolismo , Destilação , Fermentação , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácido Acético/metabolismo , Acetona/metabolismo , Isótopos de Carbono/química , Ácido Láctico/metabolismo , Espectroscopia de Prótons por Ressonância Magnética
7.
Biotechnol Prog ; 35(3): e2789, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773839

RESUMO

This research shows the effect of dilute acid pretreatment with various sulfuric acid concentrations (0.5-2.0% [wt/vol]) on enzymatic saccharification and fermentation yield of rye straw. After pretreatment, solids of rye straw were suspended in Na citrate buffer or post-pretreatment liquids (prehydrolysates) containing sugars liberated after hemicellulose hydrolysis. Saccharification was conducted using enzymes dosage of 15 or 25 FPU/g cellulose. Cellulose saccharification rate after rye straw pretreatment was enhanced by performing enzymatic hydrolysis in sodium citrate buffer in comparison with hemicellulose prehydrolysate. The maximum cellulose saccharification rate (69%) was reached in sodium citrate buffer (biomass pretreated with 2.0% [wt/vol] H2 SO4 ). Lignocellulosic complex of rye straw after pretreatment was subjected to separate hydrolysis and fermentation (SHF) or separate hydrolysis and co-fermentation (SHCF). The SHF processes conducted in the sodium citrate buffer using monoculture of Saccharomyces cerevisiae (Ethanol Red) were more efficient compared to hemicellulose prehydrolysate in respect with ethanol yields. Maximum fermentation efficiency of SHF processes obtained after rye straw pretreatment at 1.5% [wt/vol] H2 SO4 and saccharification using enzymes dosage of 25 FPU/g in sodium citrate buffer, achieving 40.6% of theoretical yield. However, SHCF process using cocultures of pentose-fermenting yeast, after pretreatment of raw material at 1.5% [wt/vol] H2 SO4 and hydrolysis using enzymes dosage of 25 FPU/g, resulted in the highest ethanol yield among studied methods, achieving 9.4 g/L of ethanol, corresponding to 55% of theoretical yield.


Assuntos
Microbiologia Industrial/métodos , Caules de Planta/química , Saccharomyces cerevisiae/metabolismo , Secale/microbiologia , Biocatálise , Celulase/química , Celulose/química , Celulose/metabolismo , Etanol/metabolismo , Fermentação , Hidrólise , Caules de Planta/metabolismo , Caules de Planta/microbiologia , Polissacarídeos/química , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Secale/química , Secale/metabolismo , Ácidos Sulfúricos/química
8.
Molecules ; 24(3)2019 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-30744140

RESUMO

This study set out to assess the acetone content in rye sweet mashes prepared using the thermal-pressure method of starch liberation, and to investigate the formation of 2-propanol during the fermentation process. In the first set of experiments, we evaluated the correlation between the color and the content of acetone and furfural in industrially produced sweet mashes (n = 37). The L * value was negatively correlated with the content of both acetone and furfural, while chromatic parameters a * and b * and the yellowness index (YI) had strong positive correlations with acetone (r > 0.9) and furfural (r > 0.8 for a * and r > 0.9 for b * and YI). In the second set of experiments, we assessed the concentration of acetone and 2-propanol in distillery rye mashes, fermented by S. cerevisiae yeast and lactic acid bacteria. The influence of fermentation temperature on the formation of 2-propanol was also evaluated. The presence of 2-propanol in the post-fermentation media was confirmed, while a decrease in acetone content was observed. Fermentation temperature (27 °C or 35 °C) was found to have a significant effect on the concentration of 2-propanol in trials inoculated with lactic bacteria. The content of 2-propanol was more than 11 times higher in trials fermented at the higher temperature. In the case of yeast-fermented mashes, the temperature did not affect 2-propanol content. The acetone in the sweet mash was assumed to be a precursor of 2-propanol, which was found in the fermented mashes.


Assuntos
2-Propanol/metabolismo , Acetona/metabolismo , Fermentação , Lactobacillales/metabolismo , Saccharomyces cerevisiae/metabolismo , Amido/metabolismo , Pressão , Temperatura
9.
Food Technol Biotechnol ; 55(3): 333-359, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29089848

RESUMO

This study investigates the effect of ageing on the qualitative and quantitative composition of plum distillate in contact with oak wood chips. Maturation was performed with lightly toasted French oak (Quercus sessiflora and Quercus robur) chips or oak chips made from fragments of empty barrels that had been used for ageing cognac. The effects of oak chip dose, process temperature, ageing system (static or circulatory) and ultrasound treatment were assessed. Maturation of plum distillate samples with oak chips resulted in higher levels of extractable organics (including tannins) and colour changes, which were correlated with the type and dose of oak chips, and the conditions of maturation. The content of sugars such as glucose, xylose and arabinose also increased, depending on the conditions and type of oak chips. Degradation of lignin resulted in liberation of sinapaldehyde, syringaldehyde, coniferaldehyde and vanillin, with intensities depending on the applied parameters. In terms of volatiles, decreases in the concentration of higher alcohols and aliphatic aldehydes were observed in the majority of maturation experiments, while concentrations of furanic aldehydes increased depending on the type and dose of oak chips, as well as on the conditions of maturation. The quantities of esters such as ethyl acetate decreased in the majority of experimental variants, whereas concentrations of ethyl caproate, ethyl caprylate and ethyl caprate increased gradually. Some phenols and lactones were detected in all matured samples, with the lowest levels found in the samples aged with oak chips made from cognac barrels.

10.
Molecules ; 22(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28974014

RESUMO

The aim of this study was to evaluate the influence of different starch liberation and saccharification methods on microbiological contamination of distillery mashes. Moreover, the effect of hop α-acid preparation for protection against microbial infections was assessed. The quality of agricultural distillates was also evaluated. When applying the pressureless liberation of starch (PLS) and malt as a source of amylolytic enzymes, the lactic acid bacteria count in the mashes increased several times during fermentation. The mashes obtained using the pressure-thermal method and malt enzymes revealed a similar pattern. Samples prepared using cereal malt exhibited higher concentrations of lactic and acetic acids, as compared to mashes prepared using enzymes of microbial origin. The use of hop α-acids led to the reduction of bacterial contamination in all tested mashes. As a result, fermentation of both mashes prepared with microbial origin enzyme preparations and with barley malt resulted in satisfactory efficiency and distillates with low concentrations of aldehydes.


Assuntos
Etanol/química , Fermentação , Hordeum/química , Amido/química , Ácidos/química , Aldeídos/química , Grão Comestível/metabolismo , Contaminação de Alimentos , Qualidade dos Alimentos , Hordeum/microbiologia , Humanos , Saccharomyces cerevisiae , Temperatura
11.
Artigo em Inglês | MEDLINE | ID: mdl-28105888

RESUMO

This study investigates the effect of treatment with activated carbon and other adsorbents on the chemical composition and organoleptics of a barley malt-based agricultural distillate. Contact with activated carbon is one of the methods by which the quality of raw distillates and spirit beverages can be improved. Samples placed in contact with 1 g activated carbon (SpiritFerm) per 100 ml distillate with ethanol content of 50% v/v for 1 h showed the largest reductions in the concentrations of most volatile compounds (aldehydes, alcohols, esters). Increasing the dose of adsorbent to over 1 g 100 ml-1 did not improve the purity of the agricultural distillate significantly. Of the tested compounds, acetaldehyde and methanol showed the lowest adsorption on activated carbon. The lowest concentrations of these congeners (expressed in mg l-1 alcohol 100% v/v) were measured in solutions with ethanol contents of 70-80% v/v, while solutions with an alcoholic strength by volume of 40% did not show statistically significant decreases in these compounds in relation the control sample. The reductions in volatile compounds were compared with those for other adsorbents based on silica or activated carbon and silica. An interesting alternative to activated carbon was found to be an adsorbent prepared from activated carbon and silica (Spiricol). Treatment with this adsorbent produced distillate with the lowest concentrations of acetaldehyde and isovaleraldehyde, and led to the greatest improvement in its organoleptics.


Assuntos
Bebidas Alcoólicas/análise , Carbono/química , Produtos Agrícolas/química , Destilação , Dióxido de Silício/química , Compostos Orgânicos Voláteis/isolamento & purificação , Adsorção , Hordeum/química
12.
Molecules ; 21(10)2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27706083

RESUMO

The objective of this study was to determine the efficiency of rye and barley starch hydrolysis in mashing processes using cereal malts as a source of amylolytic enzymes and starch, and to establish the volatile profile of the obtained agricultural distillates. In addition, the effects of the pretreatment method of unmalted cereal grains on the physicochemical composition of the prepared mashes, fermentation results, and the composition of the obtained distillates were investigated. The raw materials used were unmalted rye and barley grains, as well as the corresponding malts. All experiments were first performed on a semi-technical scale, and then verified under industrial conditions in a Polish distillery. The fermentable sugars present in sweet mashes mostly consisted of maltose, followed by glucose and maltotriose. Pressure-thermal treatment of unmalted cereals, and especially rye grains, resulted in higher ethanol content in mashes in comparison with samples subjected to pressureless liberation of starch. All agricultural distillates originating from mashes containing rye and barley grains and the corresponding malts were characterized by low concentrations of undesirable compounds, such as acetaldehyde and methanol. The distillates obtained under industrial conditions contained lower concentrations of higher alcohols (apart from 1-propanol) than those obtained on a semi-technical scale.


Assuntos
Amilases/biossíntese , Fermentação , Hordeum/química , Secale/química , Amido/biossíntese , Agricultura/métodos , Álcoois/química , Amilases/química , Destilação/métodos , Amido/química
13.
Biomed Res Int ; 2016: 3154929, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27722169

RESUMO

Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015-0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.


Assuntos
Beta vulgaris/microbiologia , Reatores Biológicos/microbiologia , Etanol/metabolismo , Lipase/química , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Beta vulgaris/química , Biocombustíveis/microbiologia , Metabolismo dos Carboidratos/fisiologia , Etanol/isolamento & purificação , Extratos Vegetais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...